

Prediction of a films success
Using a dataset of ~45,000 movies

Name: Celine Stenberg
Supervisor: Michael Claudius
School: Zealand - Sjællands Erhversakademi
Deadline: 29-05-2020
Count: words - 4133 (without front page, table of contents, and bibliography)

characters - 23561 (without front page, table of contents, and bibliography)

1. Introduction and motivation 3
2. Problem definition 3
3. Method 3
4. Planning 4
5. Process / Findings 5

5.1. Inspection 5
5.2. Cleaning 6

5.2.1. Excel and VSCode 7
5.2.2. Creating the new datasets 8
5.2.3. Updating the movies_metadata dataset with new attributes 9

5.3. Small movies dataset with revenue as label 11
5.3.1. Preparing movies_small 11
5.3.2. Models 14

Linear Regression 14
Batch Gradient Descent 14

Results on the validation set 15
Random Forest 15

Fine-tuning 15
Results on the validation set 16

Functional API 16
Fine tuning 17
Results on the validation set 18

5.4. Final predictions for all models 18
5.4.1. Linear Regression 19
5.4.2. Batch Gradient Descent 19
5.4.3. Random Forest 19
5.4.4. Functional API 20

6. Conclusion 21
6.1. What should the model predict? 21
6.2. What model should be used to predict success? 21
6.3. What attributes seem to be most relevant? 21
6.4. Can the model be used by filmmakers? 22

7. Reflection 22
7.1. The questions 22
7.2. Method 22
7.3. Plan 22

8. Bibliography 23

2

1. Introduction and motivation
Filmmaking is an enormous and far reaching global industry. Cinemas, award shows and every
day tv has been and are still a big part of our lives. We consume film like a sustenance for our
well-being and they form us and our memories with their portrayals and influence on
pop-culture. So, being such a big part of our lives today, one would think that there must be a
recipe for predicting, and thereby securing, a release’s success. It’s an interesting thought, and
one that can be applied to many scenarios in our day-to-day lives.

In this synopsis I will attempt to make a model that does just that.

2. Problem definition
The big question is then:

Is it possible to correctly predict an unpublished films success based on data collected
from already released films?

This further leads to the sub-questions:

● What defines a films success - what should the model predict?
● What model should be used to predict success?
● What attributes / combination of attributes seem to be most relevant?
● And can this be used by filmmakers to ensure higher success?

3. Method
When answering these questions, I intend to mainly rely on practical and experimental work.
This is simply because I’m handling a specific and individual case and not a common problem
or topic often discussed. For this reason I will mostly have a somewhat trial-and-error approach
when figuring out what to proceed with in this project.
However, the different models and methods that can be used in similar cases are of course
explained online and in books. So, I will naturally delve into researching online as well as
reading up on topics in our textbook and re-watching videos for this curriculum when dealing 1

with questions not specifically pertaining to this individual case. By doing so I can compare
methods and their usefulness in general - and from there decide what to try out.

1 This semester has largely followed the book Hands-on Machine Learning with Scikit-Learn, Keras and
Tensorflow by Aurélien Géron

3

4. Planning
I will in general write about and explain interesting findings and important points of the process
in the synopsis throughout the week. Should I forget, then the plan for the weekend is specified
as a reminder. This way the synopsis will be up to date at the beginning of every week.

I will start by examining the dataset then move on to preparing it for training. I will also have time
set aside for studying and testing different approaches.

 Mon. Tue. Wed. Thur. Fri. Sat. Sun.

Week 18 ● Examining the dataset and defining the project’s
goal and framework / structure.

● Manipulating and cleaning the dataset making it
ready for further inspection.

● Setting up / writing the theoretical parts of the
synopsis.

Same as the
weekdays + making
sure that the
synopsis is updated.

Week 19 ● Visualizing the data.
● Looking for correlations.
● Further cleaning of the dataset.
● Testing attribute combinations.

Week 20 Researching and experimenting with:
● Training and evaluating.
● Fine tuning.

Week 21 ● Training and evaluating.
● Fine tuning.

Week 22 ● Finishing the synopsis.
● Preparing for the oral exam.

Deadline
Fri. 22/5
11:00

5. Process / Findings

5.1. Inspection
The data I will be using is found on kaggle.com as the Movies dataset. The set is made up of 7
.csv files containing different information relating to movies. I will be using two of the files:
movies_metadata.csv that handles specific information such as name, budget, revenue,

4

average voting scores, and genres as well as credits.csv that contains all the information for the
cast and the crew of each film.

Movies_metadata has 24 columns but many of them seem quite irrelevant. These include for
example the columns homepage, poster_path, and video. Several of the columns also have
clear missing values portrayed with either 0’s or empty lists/strings. Columns where there can
be multiple values attached to a specific film are JSON arrays inside strings.

Running the .corr() function shows numerical values correlation to each other. So far revenue
and vote_count seem to be the only attributes correlating. It also shows that some of the
numerical datas types are wrong as they’re not shown in the table.

Using the function type() shows that for example the data in the column budget are of type
string, and not int as it should be. Trying to cast budget as a type int returns an error message
saying that “/ff9qCepilowshEtG2GYWwzt2bs4.jpg” could not be converted. This shows that it
was not just put in as the wrong type, but something else has happened.

5

It’s thus clear that the dataset will need a bit of cleaning up before proceeding further. However,
just looking at the information available, it seems reasonably logical to use revenue as the
indicator of success. Revenue represents the value of a film in relation to its income and hints to
the amount of people that has paid to watch it.
Other attributes that may be interesting to explore are the genres as well as the vote_count and
vote_average. The last two, as well as revenue, could be used to make a form of scoring
system for each genre. Likewise, with the credits.csv file containing information about the cast, it
could be interesting to see if the actors in a movie correlates to the revenue. This could be done
similarly with a scoring system for every actor themselves as well as a cumulative score for the
films.

Now, having a label that the model will be trained on and no continuous flow of data indicates
that supervised offline learning will be the best approach when creating a model to complete the
task.

5.2. Cleaning
As mentioned there is a problem with the types of data in some of the columns. After looking at
the data in VSCode it was clear that the error message was due to a new line that had been
made inside a string. This had been interpreted as dividing two instances and therefore putting
a string value belonging to another column into budget. In an attempt to find more of these
mistakes I made a function that would check if the value was an int, and if it was not, return the
value as well as the index.

Next I tackled the problem with the JSON arrays. Because of the way the values are set up it’s
not possible to easily access all the information and also compare them to other values in other
columns. Each movie is in it’s own array inside a JSON string and has many mistakes so that
even built in functions such as json.load(), that reads data in JSON formats, are not usable.
A way to solve this issue is creating new .csv files with all the data inside one pair of brackets
and in the correct JSON format.
I will not be doing this with all JSON array columns, but only genres from movies_metadata.csv
and cast from credits.csv as they are the ones of interest.

5.2.1. Excel and VSCode
When making the new cast and genres_instances datasets, the movie_id the data is connected
to still needs to be included for each mention of a genre or actor. There will therefore have to be
a column with “movie_id” so the values can be accessed based on the movie. A manageable
way to do this is to make the new dataset in Excel. Excel displays the actual data, has a number
of functions available and eliminates some of the problems that could occur using python.

First I imported the data as a .csv file with UTF-8 encoding. This ensures that each column in
the array actually gets its own column in Excel and with the correct characters. The dataset has

6

3 columns: cast, crew, and movie_id. I then used the SUBSTITUTE (UDSKIFT) function in a
new column so I could take the values in the cast column (column A) and replace the closing
curly brackets with the movie_id value (column C) + the closing curly brackets. This I did with
the CONCATENATE (SAMMENKÆDNING) function. It basically looks like this:

Or like this if using the built-in function window:

Now the new column has all the information in the cast column with the added movie_id from
the movie_id column. The new column is the only one needed for the new dataset so the
original columns need to be deleted. But the newly made column is dependent on variables
referencing them so first the new column has to be copied and pasted into another column as
their values without references to other columns. Each row is still one movie made up of a
JSON array containing multiple JSON strings.

The file is then saved as a .txt file and opened in VSCode where I’m separating each reference
to a cast member by removing the brackets around each row, besides the first bracket pair in
the very beginning and the very end of all the data, and changing the single quotes to JSON
appropriate double quotes. This is all done with the basic find and replace function.
I then tried to load the file with json.load() in jupyter. Whenever an error came up I would find it
in VSCode and search for that general type of error to correct all instances of it.

5.2.2. Creating the new datasets
With a clean file it is now possible to open it in jupyter as a json file. After changing it to a
pd.DataFrame I casted it to it’s own .csv in the proper directory. This is done with both cast and
genres like so:

7

Next the actual datasets for actors and genres need to be made. To do this I merged each actor
with vote_average from cast and revenue from movies_metadata on the id of the film. I grouped
the actors by their id, so that the same actor was in it’s own group of all the films they had
starred in, and then used the .agg function to put in several values, such as the mean and the
sum, based on the vote_average and revenue of the films. This is how:

So now a dataset with each respective actor and their scores can be used in the
movies_metadata set. Of course this is also done with genres and both are saved as .csv files,
ready to use for new attributes. A slice of what’s in the dataset can be seen here:

8

5.2.3. Updating the movies_metadata dataset with new attributes
Before rechecking the correlation between the numerical values, the new attributes should be
added. The attributes I want to try out are:

● cast_vote_sum
● cast_vote_mean
● cast_revenue_sum
● cast_revenue_mean

● genres_vote_sum
● genres_vote_mean
● genres_revenue_sum
● genres_revenue_mean

Just like when making the new datasets, the new attributes are made by first merging the
individual actors' scores with the cast dataset and then merging, grouping and aggregating the
chosen values into the movies_metadata dataset. The exact same is done with genres.

With the new attributes and the data types corrected, the .corr() function can be re-used.

9

As expected, budget and revenue does correlate well at 0.764501. As can be expected revenue
also correlates great with the new attribute cast_revenue_mean at 0.787104.
As mentioned the vote_count also correlates really well with revenue, but since it’s a value that
will only be known after the release of a movie we can’t really use it in the model. So, all
attributes that cannot be known before a release will be removed with the exception of the label.
However, the attribute vote_average correlates even more with cast_vote_mean than revenue
does with budget or cast_revenue_mean. Using vote_average as an alternative success
indicator / label with cast_vote_mean as the main predictor seems to be very much a possibility
too.
The attributes with no interest will be removed before progressing further. The attributes that
have been kept are these:

● budget
● revenue
● vote_average
● vote_count
● cast_score_sum
● cast_score_mean

● cast_revenue_sum
● cast_revenue_mean
● genres_score_sum
● genres_score_mean
● genres_revenue_sum
● genres_revenue_mean

Before the dataset can be used it needs to be scaled. This includes the label revenue, as it’s
returning numbers in the millions and therefore is of a completely different range that might
skew the results. I am using MinMaxScaler() for this on the whole dataset like so:

10

5.3. Small movies dataset with revenue as label

5.3.1. Preparing movies_small
All the following models are going to use revenue as the label. The relevant attributes for this
task have been copied from the movies_scaled dataset into another named movies_small. The
dataset has quite a lot of missing values, represented with “0”, and to not have the calculations
be too skewed, each row with a 0 in revenue or budget is removed. This removes a substantial
amount of the dataset and leaves only 5347 movies. This is how the data looks now:

The dataset is then randomized and split into a training set, validation set(20% of the training
set), and a test set (20% of the whole set). Revenue is removed and put into its own
corresponding datasets.

Of course removing the instances of 0 changes the correlation between some.

11

Plotting the attributes against each other will show the correlation more visually. None of them
seem to have a clear linear tendency, but as expected budget and cast_revenue_sum are the
closest to one.

12

In all of the models that I will test I will use MAE (Mean Absolute Error) as the loss function due
to the amount of outliers. Understanding what the error means can be a bit difficult with big or
scaled numbers. Using the .describe() function helps with putting the predictions and the MAE
values in a better perspective. They can now be compared to f.x the mean of revenue.

For this reason I made a function that calculates the percentage error of the predictions’
absolute mean value against the absolute mean value of revenue. This is not a true percentage
error for every instance, like MAPE (Mean Absolute Percentage Error), but instead the average
MAE compared to the average revenue.

13

5.3.2. Models

Linear Regression
The first model to try out is the simple Linear Regression model. The model is fitted to the
training set and is then used to predict on the validation set.

Batch Gradient Descent
Using the optimization tool gradient descent is a way of training a Linear Regression model. The
gradient descent will actually create its own model and so it can be interpreted as a separate
model entirely. In this case I will be using Batch Gradient Descent (BGD). With BGD it’s possible
to add more tunable parameters, such as biases and learning rate, to the model, and it will test
them on the whole training set in iterations. For each iteration the parameters are changed to
improve on the loss function. The BGD function will return the history of the iteration results and
the finished model with tuned parameters.
Here’s the batch_gradient_descent function: 2

To test as many parameters as possible I‘ve made a bgs_test function that takes an array of 3

iterations and learning rates and runs them against each other in the BGD function.

2 http://pavelbazin.com/post/linear-regression-hyperparameters/
3 http://pavelbazin.com/post/linear-regression-hyperparameters/

14

The arrays that I will be testing are these:

The test showed that the best parameters were a learning rate of 0.1 and 40000 iterations.

Results on the validation set

With the best parameters in hand a new model can be trained with them on the training set. The
fine tuned model is then saved as predictor and used on the validation set.

Both the MAE and R2 score seems to be slightly better than with the Linear Regression model.

Random Forest
The Random Forest model is used similarly to the Linear Regression model; it’s trained and
then used on the validation set. The results are as so:

Fine-tuning

So far the Random Forest model performs significantly better compared to the previous models.
To fine tune the model I've chosen GridSearchCV. To do this a parameter grid with arrays of
Random Forest parameters has to be declared. Next the GridSearchCV function is used with 4

the estimator set to a Random Forest model, the parameter grid, the number of cross validation

4 Aurélien Géron, p. 76

15

folds and the wanted performance measure. When the grid_search has been made it’s fitted on
the training set.

.best_params_ showed that a max features at 5 and number of estimators at 100 is the most
optimal parameter settings.

Results on the validation set

Using a Random Forest model with the specified parameters yields these numbers on the
validation set:

Functional API
The last model I’m going to try is a Functional API.
First the model should be defined. It will just be a simple model with 1 hidden layer with 10
neurons for now. The activation function will be relu as it’s usually the default. The models
structure looks like this: 5

5 Aurélien Géron, p. 309

16

Next step is to compile the model. The loss function will be MAE just like with the other models.
The optimizer will be Adam, simply because it’s faster than stochastic gradient descent (SGD)
that I would otherwise have used. SGD functions just like the Batch Gradient Descent from
earlier, but will only train on a single instance at a time compared to the whole training set at
once. The metrics will be MAE and MAPE (Mean Absolute Percentage Error). The metrics are
used when evaluating a model and will show the error scores for each epoch for both the
training set and validation set.
The model is fit on the training set, validated on the validation set and finally evaluated on the
test set.

And the predictions on the validation set looks as follows:

Fine tuning

The fine tuning of this model is basically making a function that creates a functional API model
and compiles it and then an excessive amount of for-loops taking pre-defined arrays as the
parameters to try against each other.
The function that will build the model is defined like this: 6

6 Aurélien Géron, p. 320

17

I’m going to try a large number of arrays against each other. It will take a long time, but will only
have to be done once. The arrays are specified here:

And lastly the for loops that will do all the work:

Sorting results by the MAE amount will show the best parameters which turned out to be 400
epochs, a learning rate at 0.001 and three hidden layers with 10, 30, 10 neurons.

Results on the validation set

Now the model can be used to predict on the validation set. This is how it turned out:

5.4. Final predictions for all models
Because it’s such a small dataset it would be interesting to see how well all of the models do on
the test set that’s normally reserved for the best. Even though the Batch Gradient Descent
model is an optimization of the Linear Regression model I do not consider them as one.
Therefore I will include the final prediction scores for the pre-optimized Linear Regression.
The histograms under every result shows the predictions on top of the label. The x-axis is the
number of instances in the test set while the y-axis is the predicted amount. The histograms
show how the models predicted and exactly where they were wrong.

18

5.4.1. Linear Regression

5.4.2. Batch Gradient Descent

5.4.3. Random Forest

19

5.4.4. Functional API

Here are all the results put into a table for easier comparisons:

 Final MAE on test set Final MAE in
percentage

Final R2 on test set

Linear
Regression

0.017504776225740058 0.5322887123155582 0.73876203844995

Batch Gradient
Descent

0.01749809696792419 0.532085608117242 0.7413409824548668

20

Random Forest 0.014117856646988435 0.42929858904628254 0.8327383373067601

Functional API 0.013688536269600114 0.41624372973795126 0.8412600804260673

6. Conclusion
Based on my described work I will now conclude on the sub-questions.

6.1. What should the model predict?
From a business point of view the revenue is the clear winner. In many cases the point of
releasing a movie is to earn some money. This is the reason why production companies agree
to fund the productions and the reason why movies are hyped in the media through advertising.
But is a movie successful if many watched it, maybe due to great advertising, but people
actually disliked it and gave it bad ratings? All in all it depends on the goal in making the movie
and rarely is it only one or the other. But if the objective was to release a movie that would be
well loved and treasured by many, then using the vote_average as the label could potentially be
a great way to go - especially since it will be able to utilize almost all the data in the dataset.
This is something that I will be looking into in preparation for the oral exam.

6.2. What model should be used to predict success?
When using revenue as the label the best model to use can clearly be seen in the provided
results. The model that performed the best was the Functional API. Rounded up the mean
absolute error score finished at 0.0137, in percentage at 0.416, and an R2 score at 0.833. This
is just slightly better than the Random Forest scores.
However, running both models several times does provide different results, and sometimes
Random Forest even performs better than the Functional API model. So, when determining
which model to use the answer would be either one of them. It could be that with more fine
tuning and training the results might differ enough to conclude one better than the other, but as
it is now, with the parameters given, the models are somewhat equal.

6.3. What attributes seem to be most relevant?
When making a movie it seems that casting the right actors is important if the movie has to earn
a lot of money or be rated highly. This reflects “reality” in the sense that well loved and well
known actors will have a higher value and salary. Combining the actors with the voting averages
and revenue averages of the movies they had participated in showed these exact values’
correlation to the revenue and voting average of a film.
The budget also showed its significance in a movie's success, as expected. This is not
surprising as the budget is what's paying for cast, crew, advertising, props and equipment;
everything that’s contributing to the making of a movie.

21

6.4. Can the model be used by filmmakers?
Looking at just the MAE value and the R2 score it seemed that the models actually didn’t
perform too bad, but when comparing the MAE and the MAE in percentage to the revenue
mean it’s clear that they actually were about 50% off in their calculations. The models would
definitely not be usable by filmmakers to predict or make a successful film. The data is based on
movies spanding over many years and trends change, that’s what makes them trendy, which
might be the reason that they’re seemingly unpredictable.

7. Reflection

7.1. The questions
The questions still stand and seem equally as relevant now. They were not too specific or
restrictive, but simple and basic questions one has to ask when creating a model - which led me
to have more freedom when answering them.

7.2. Method
I didn't really do anything that I hadn’t mentioned under Method. But I did find myself
researching more than I had expected and running into more problems than anticipated.
Especially converting the JSON arrays gave me a lot of trouble due to mistakes in the data.
In the beginning I thought that I could mostly just follow what the book said about the topics I
needed, but I had to resort to alternative sources for almost everything. Both to verify how to do
things, but also because the book was insufficient for my specific needs or didn’t handle the
data / models the way I wanted to.

7.3. Plan
My plan was in general very fitting. I found that I mostly followed the process in the plan and it
was very helpful writing all my intentions down, so I had a better overview throughout the whole
project. But I was quite optimistic when thinking that I could write on my synopsis everyday. It’s
difficult to write about something when you don’t know if what you did is correct or will work. A
lot of the times this would only be revealed days or weeks later. For this reason I kept revisiting
earlier work to change it or re-testing it. In the end I ended up writing about my process and
findings the last two weeks. Although I did write a log book for every day and saved screenshots
of anything important for comparisons if need be.

22

All in all I feel that I did well when preparing the project and I learned a lot about what’s
important and useful during a process like this. It has definitely been an altogether successful
process.

8. Bibliography
Aurélien Géron Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd
edition, O’Reilly 2019

Compulsory textbook for this semester. Used for examples of all models and Grid
Search.

Rounak Banik The Movies Dataset, Kaggle.com,
https://www.kaggle.com/rounakbanik/the-movies-dataset

Used for the dataset.

Pavel Bazin Linear Regression: Implementation, Hyperparameters and their Optimizations
http://pavelbazin.com/post/linear-regression-hyperparameters/

Used example of how to make a Batch Gradient Descent test function.

23

